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Foreword

This collection of papers does not
constitute a formal reporting of the activities
of the ARPA Materials Research Council Summer
conference. Lach report, memorandum oy technical
note is a draft of the author or authors and is
their work alone. The Steeriny Committee, in
conjunction with the authors, will decide how
this material can best be presented as a formal
report to ARPA.
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GRADIENTS IN POLYMERIC MATERIALS

M. Shen and M. B. Bever

Abstract

In this .niemorandum we consider the structure and
properties of polymeric materials possessing spatial gradients.
Potential applications of such materials are also discussed.

Gradients in the structure of polymeric systems may
be generated by wvarying the chemical nature of the monomers,
the molecular constitution of the polymers and the supra-
molecular structure or morphology of the polymers. Gradients
in each of these categories are possible for single-phase as
well as heterophase systems. Such gradients are associated
with gradients in properties.

The properties considered are chemical, mechanical,
biomedical and transport properties. Structural gradients in
the polymeric system may lead to a desired gradient in a single
property, or to a combination of more than one property which
may assume optimum values in different regions of the material.
In the latter case, one of the properties is frequently related
to mechanical integrity.

Possible applications of gradient polymeric systems
include plastic gasoline tanks, biomedical implants, and damping

materials for a wide frequency range.
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GRADIENTS IN POLYMERIC MATERIALS

M. Shen and M. B. Bever

Introduction

The structure and properties of polymeric materials
can be varied over wide ranges. Most of the pertinent efforts
in this regard have been devoted to homogeneous and in some
measure to laminated polymeric systems. [Little attention has
been directed toward gradient systems, that is, systems in
which structure and properties vary continuously in spacc.

Gradient materials in general are bheginning to attract
some attention. Bever and Duwez'® have considered gradients in
composite materials. Ferry? has analyzed some aspects of
gradients in the cross linking and swelling of polymers.

In this memorandum we shall systematically discuss
possible gradients in polymeric materials. We shall be con-
cerned primarily with the structure and properties of these
materials rather than the techniques for their preparation.

We shall mention various illustrative examples but shall not
attempt to explore exhaustively the entire range of possible

applications.

Structure
We shall consider the structural features of polymers

on three levels of resolution:



(i) the chemical nature of Lhe monomers;
(ii) the molecular constitution of the polymers; and
(iii) the supramolecular structure or morphology of
the polymers.
In each of these categories the possibility of gradients in
space exists. We shall discuss these gradients fivst for
single-phase systems and then for heterophase systems.

Single-Phasc Systems

The nature of a polymer depends first of all on the
constituent monomers. Ior instance, at room temperature the
polymer of methyl methacrylate is a tough, hard plastic,
commonly known as "Plexiglas"; by contrast the polymer of
methyl acrylate is a g~ft rubber. These two monomers can be
combined to form random copolymers of any composition ranging
from pure poly (methyl methacrylate) to pure poly (methyl acrylate).
A gradient polymer with a spatial variation in composition can
therefore be prepared. Polymer chemistry offers many possi-
bilities for creating siwmilar compositional gradients by co-
polymerization techniques.

The degree of crosslinking is an important variable in
many polymers. For example, the rubber in an elastic band is
lightly crosslinked; an increase in the deyree of crosslinking
converts the same material into a hard plastic. Various
techniques are available for controlling the degree of cross-
linking, such as irradiation and the use of chemical cross-

linking agents. These techniques can be adapted to producing



gradients in the deyree of crosslinking. Some of these tech-
niques have been considered by Ferry’ for yradient structures
in hydrophilic polymers.

Differences in the degree of crosnlinking arv also
associated with differences in the degree of equilibriun
swelling (i.e., the amount of wolvent imbibed in the polymor
network). The degree of equilibrium wwelling can also be
controlled by changing the chemical nature of the monomars.

For example, pure poly (hydroxyethyl methacrylate) can absorh

an appreciable amount of water. The addition of even a nmall
amount of a nonhydrophilic monomer, such as mothy! metha-
crylate, to form a copolymer with hydroxyethy! methacrylate
drastically reduces the degree of swelling due to the abmorption
of water. In general, the shear modulus of a polymer decreases
with increasing doegree of swelling.

The average molecular weight and the molecular wejaht
distribution are other variablen affecting ningle=phase polymers.
Since these variables can in principle bhe manipulated (e.q., by
high-shear flow), correnponding gradien' structures may be
achieved.

Oriented polymers posmest certain unique features which
distinguish them from unorifented snez. ror instance, biaxially
stretched polycarbonates of fer superior resintance to crazing
and uniaxially stretched nylon has improved yield resistance.
Gradients in the degree and the direction of the orientation

are of obvious interest.
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Hecenl evidence Sugyasts the posaibility of the ex-
istence of supramolecular structures in single-phase, nOR=
crystalline polywers. The morpholoyy associated with such
structures mnerits consideration. Their effects would probably
be similar o those of the suptanolecular structures encountaered
in heterophase polyners.

mtgfg;si_tggu Systoms

The gradients diwcussed In the previous section for
single-phase systens canh also occur In heterophane GYSLARE,
Other gradients are uniguely characteristic of heterophase
syatenn; they will be discussed in this section.

Crystallinity = Crystalline polymers are alvays
heterophase because total crystallinity can alaost never be
achieved, at least not in the bulk state. An anorphous
fraction which Is always present constitutes a second phase.
The ratio of crystalline to non=crystalline material . however,
can be varied., The degree of crystallinity may be changed by
several methods, Vor a given naterial, this is possible by
changing the rate of cooling from the molten state or by
annealing of the solid polymer.

she ability of a polymer to crystallize is also
determined by lhe regularity ot its chain structure. AN iso-
tactic polystyrene, for exanple, being more regqular in structure
is semicrystalline, vhereas atactic polystyrene is always
anorphous because of the greater raniomness of its structure.

The degree oOf crystallinity is therefore affected by the degree

%=



of tacticity. Similar ef fecte Can also be achieved by adjust ing
the relative ratio of cis and trans isomers of a biloek polymey,
Vor instance, trans-gpolyisoprens js erystalline, vhile cig-
iolyisoprens, i.e., natural rubber, is amorphous.

A thirtd method of aftectiag the crystallinity of o
polymer is copolymerization. Mlywuanugrogmvhmn or “Teflon”
is a highly crystalline Polymer. The addition or an appropriate
amount of perflvoropropy lene as a random comonoter reduces Lhe
doyree of crystallinity. 1In fact, a composition of 108 per-
fluoropropylene and 704 tetrafluoroethylene yields an exce | lent
high=tewmperature resistant rubber, knovn as Teflon ree, in
contradistinction to Teflon, vhich is & hard plastic,

It is evident that each of the three sethoda of changimg
the degree of crystallinity described in the foregoing may be
utilized in such a manner a8 Lo produce a qgradient in the
crystailinity of a polyswr, Other Auperctln of crystallinity,
Such as the orientat ion amd slae of the nphorulites, may also
be varied. Their ot fevts, hovever, are 14 genetal Joss marked
than those of the depres of crystalliniey.,

Polymer Mixtures - Another important clans of hetero-
phase polymers can be pPrepaced by sixing Jifterent polymers.,
Most polymers are insoluble in each othar and thus show micro-
phase separation. Moat polymer mixtures, therefore, are
heterophase. Three principal methods of nixing are available.
The first conaists of milling or solvent canting of two or more

polymers, which produces the s0-called "polyblends®, the second



i the synthusis of block copolymers and the third the synthesis
of yraft copolymurs. The preparation of polyblends by mixing
is the simplest and most flexible method. The structures of
block and graft copolymers are on a finer scale than those of
the polyblends.

The morphology of heterophase mixtures results from
the amount and configuration of the constituent phases. In
one possible case, onc phase is continuous, i.e., the matrix,
and the particles of the other are dispersed in it. The
variables are the amount of the dispersed phase and the sizes
and shapes of the particles of this phase; for example, they
may be spheres, rods or platelets. In another case, each of
the two phases is interconnected with itself and the two phases
are interpenetrating. In the third case, alternating layers of
the two phases occur.

in polymers some of these different configurations can
be generated by varying :-he relative amounts of the components
or by the method of preparation. An example of the latter is
the preparation of a polystyrene-continuous matrix of a styrene-~
butadiene-styrene block copolymer by casting from its solution
in tctrahydrofuran/methyl ethyl ketone, whereas a Polybutadiene-
continuous matrix of the same block copolymer results if it is
cast from a solution of benzene/heptane.

Gradients of the morphological features of heterophase
systems may involve the amount, the particle size and particle

shape of the dispersed phase. Typical examples of geometrical



possibilities, applied on the scale of composite materials,
have been discussed by Bever and puwez.' In the case of hetero-
phase polymers, a gradient may pe carried to the point where an

inversion occurs according to the following scheme:
particles of A dispersed . Interconnected mixture'
in matrix of B of A and B

R Particles of B dispersed
in matrix of A

Gradients Involving Nonpolymeric Components

Reinforcing fillers, usually nonpolymeric in nature,
cause marked changes in the properties of polymers, €:.9.. carbon
black in natural rubber. The use of a concentration gradient
of a filler in a polymer is an obvious possibility. The good
bonding between carbon black and rubber suggests that glassy
carbon may be used in conjunction with a polymeric phase.

A porosity gradient can be introduced into a polymer.
For example, a foaming agent may be suitably incorporated to
bring about this effect.

Another possible development is the joining of a polymer
with an inorganic material, such as a metal or a ceramic,
through a gradient. One type of such a joint requires a porosity
gradient at the surface of the inorganic material and the im-
pregnation of the pores by the polymer.

The doping of a polymer, such as the doping of poly-
ethylene by iodine, changes the material from an insulator to a

semiconductor. The use of a concentration gradient of the
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doping agent constitutes a possible development.

properties and Applications

The properties which make gradient polymers of interest
are chemical, mechanical, piomedical and transpol - properties.
In each of these categories, a variation in space of a given
property can pe achieved by a suitable gradient in the polymeric
system. In addition, more than one property may be varied to
satisfy multiple requirements of a potential application. Thus
the coupling of several optimal properties is possible. In the
following we shall consider the aforementioned classes of
propertius and suggest potential applications wherever possible.

Chemical Properties

Certain chemical properties of polymers are intimately
related to the nature of the constituent monomers. FOr example,
many polymers are hydrophobic. uydrophilicity may be introduced
by copolymerizing spch hydrophobic monomers witl hydrophilic
monomers. One example is the copolymerization of the hydrophobic
monomer of styrene with the hydrophilic monomer of styrené
sulfonic acid. A gradient of hydrophilicity will result from
continuously varying the ratio of these two monomers.

A possible application for materials of this type is
the construction of gasoline tanks for aircraft or automobiles.
A hydrophilic interior layer will prevent the gasoline from
swelling the material, while a hydrophobic exterior layer will

pe inert to water in the environment. The strength may be



increased by blending the material with polyacrylonitrile and
polybutadiene, like ABS resins. The use of a gradient in this
case would be advantageous for maintaining structural integrity.

Other chemical properties that may be imparted to one
surface layer of a gradient polymer may be increased resistance
to oxidation, weathering, high-temperature degradation and
irradiation. Resistance to specific chemical attack, such as
by strong acids, may similarly be acnieved.

Mechanizal Properties

In general, rubbery polymers are characterized by a
high elastic limit, low elastic moduli, low fracture stress,
large fracture strain and Ligh impact resistance. By contrast,
glassy polymers have a low elastic limit, high elastic moduli,
high fracture stress, small fracture strain and low impact re-
sistance. The values of these properties of crystalline polymers
approximate those of the glassy polymers. Most of the properties
of one of these classes of materials can be modified by the
addition of a material from another class. These modifications
can be achieved by methods such as solvent swelling, degree of
crosslinking, copolymerization, filler addition and blending.
All of these methods have been shown in previous sections to
be capable of producing gradients in composition and structure:
corresponding gradients in mechanical properties can thus be
achieved.

For the mechanical properties of some of the materials,

geometrical configurations play an especially importaﬁt role.

-10~-
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A good illustration of this is the case of mixtures of poly-
styrene and polybutadiene in nearly equal proportions. 1f
polystyrene is the continuous phase and polybutadiene the
dispersed phase, the composite is relatively rigid. If the
same volume of polystyrene is present as dispersed particles
in a matrix of polybutadiene, the material is rubbery. A
transition between these two types of configuration requires
the coexistence of domains of both types thus leading to a
gradient in structure and properties.

Applications requiring a gradient in strength properties
of polymeric materials can readily be envisioned. For example,
if a relatively weak material is to be fastened to a structure,
the region in which the fastener is to be applied should have
« higher strength. This can be achieved by a suitable gradient
material. Another example is the provision of a surface layer
that is resistant to indentation and abrasion. The case of a
soft surface layer on a hard substrate, which is of special
interest for biomedical applications, will be mentioned in the
next section.

The damping capacity of polymers, due to their visco-
elastic nature, is highly t£reguency-dependent at given tempera-
ture. The usefulness of a polymer as a damping material is
confined to a limited frequency range. This range may be ex-
tended by using graded materials (prepared, for instance, by
copolymerization) each of which has a damping maximum at a

different frequency. The yradient in this application must not



be steep in order to achieve maximum effectiveness.
d opertjies

Two essential requirements for biomaterials are
compatibility with blood and tissues and inertneas to body
fluide. Both of these are surface properties, and hence can
be achieved hy the use of gradient polymers. S&ilicone rubber,
for instance, is a versatile biomaterial. MNowever, its lack
of rigidity limits its range of applicability. By combining
silicone rubber with a rigid base materia} in a continuous
gradient, this limitation may be overcome. FPerry’ has analyaud
mechanisms of achieving the same effect in hydrophilic polymers.

Glassy carbon is known to possess good biomedical
properties. The possibility of forming a gradient material
consisting ot such polymers has been mentioned aarlier. Such
& material would be of obvious interest for some biomedical
applications.

Transport Properties

The transport properties of interest here comprise the
electrical conductivity, heat conductivity, and mass diffusivity.
Each type of these transport properties depends on the character-
istics of the polymeric system.

Generally polymers are good electrical insulators.
However, by special modification some of them may be made into
semiconductors. The oxample of iodine-doped polyethylene has
been mentioned earlier. On the other hand, as insulators

polymers vary in their dielectric strength. Polymeric systems



=

e~ =y

=N

[ 2]

(24

vith spatially varying conductivities or dielectric strengths
can be obtained by suitable gradients.

Since polymers are poor heat conductors, they are used
as thermal insulating materials. They are particularly effective
in the form of fsams, e.9., “Styrofoam®™. A problem encountered
in the use of polymeric foam as a thermal insulator for cryogenic
fuel tanks in rockets has been deolamination due to thermal shock.
This difficulty can probably be overcome by the use of a gradient
material, which combines in a continuous manner across its
thickness the insulating capacity due to porosity and mechanical
strength.

Many polymers permit the diffusion of liquids and gases
of low molecular weight. 1In applications in which permeability
is undesirable, such a polymer may be made impermeable by the
introduction of an impermeable surface layer. The layer may
confer greater mechanical strength by a gradient structure with
the bulk. On the other hand, selective permeability for some
substances may be useful. Examples are polymeric membranes
used for sea water desalination or hemodialysis. 1In such
instances a gradient structure may impart superior sechanical
strength and rigidity without risk of delamination.

Combinstion of Properties

in the foregoing four sections, we have been primarily
concerned with the spatial veriations of a single property.
However, several applications considered involve the combination

of more than one property. An example of this is the use of
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polymeric foam with variuble porosity as a thermal insulator
in which effects of both the thermal and mechanical property
gradients are operative. Applications requiring combinations
of mechanical propertien with any of the other properties can
certainly be envisioned. Coupling of gradients of various

properties is generally feasible.
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EFFECT OF STRAIN ON THE FERMI ENERCY
OF SIMPLE METALS

R. Gomer and R. M. Thomson

Abstract

The effect of the strain on the chemical potential
and work function of a metal is reinvestigated. The result
is of some importance for electron emission from metal tips
under high fields and at crack tips. The results show that
the chemical potential change is more complex than that pre-
dicted in an earlier work by Schrieffer and Tiller, but

usually of the same sign.



EFFECT OF STRAIN ON THE FERMI ENERGY
OF SIMPLE METALS

R. Gomer and R. M. Thomson

The effect of elastic deformation on the Fermi energy
of metals is of some relevance to stress corrosion cracking,
since high stresses and consequently strains may occur at the
crack tip. It is also of some interest in connection with
field emission, and even more, field ionization and field de-
sorption, since the very high electric fields required for the
latter cause stresses of the order of 10'' dynes/cm? and thus
strains ot the order of 6§ = 0.02 to 0.05. The problem has been
considered by Schrieffer and Tiller' in terms of the parameters
of a free electron gas without, however, taking into consideration
that the deformation changes the lowest energy level of the free
electron gas, i.e., shifts the bottom of the box. It turns out
that this effect is appreciable, and we present herg a calcu-
lation which would be reasonably valid for free electron-like
metals, i.e., those in the left hand portion of the periodic
table. We emphasize at the outset that no attempt has been
made to calculate the change in surface dipole moment caused
by the deformation, so that our calculation applies strictly
only to the inner potential.

For metals which can be treated by the Wigner-Seit:z

method the average energy per electron is given by?

==
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E=¢qy + 2.21a/ré + 1.222/’/re - .916/r  + W(r,) Rydberg (1)

where e, is the energy of the lowest electron ie state,

o = m/m* with m*¥ an effective electron mass, Z the valence
of the atoms of the metal, W a correlation energy, and re the
radius of a sphere containing just one electron, in Bohr

units:

[%Jnaﬁ rd = V/n_ (2)

-]
where a, = 0.531 A, V the volume of the system, and ng the
number of electrons in it.

The chemical potential u is defined as

a

d(n_E) r
T [_332__Jv = g9 + [%]Ek + [%]Ecx + w[l + % +e. J (3)

e e
where
E, = 2.21(m/m*)/ré (4a)
E,, = (1.22%/% - .916) /x (4b)
and ws - 88 (4c)
re+7.§

where we have used in (4c) the Wigner interpolation form of
the correlation energy?.

Let us assume that a piece of metal is compressed
(dilat( 4) uniformly and reversibly. The mechanical reversible

work U done on the system is

U=vk's?/2 (5)

=17



where k' is an appropriate modulus. Thus, the energy increase

per electron u is

’ (]
vk'§‘/2 dcy + Agk + Atcx + AN

(6)

where v is the volume per electron, (C/J)uaﬁ r:. Note that u

is always positive regardless of the sign of 4, wvhen a system

is deformed from its equilibrium state. The A's in Eqguation 6

refer to the changes in the various terms, defined in Eqs. da-c

when the electron radius changes. In an ab initio calculation

we could determine the elastic constants of the metal from

Eq. 6 if the form of c.(r.) were known. We content ourselves

here with a much more modest approach; we will assume the moduli

to bYe known and will thus solve for Acyt

icp = u - ABk - Alcx - AW

(7)

Since the signs of all but the first terms on the right side

of Eq. 7 depend on the sign of the strain, Ace can be positive

or negative, of course. The change in u is now found very

simply from Eq. 3 and 7,

Bu = u(rl)-uir,) = Ac.#(S/J)ABk+(4/3)M:cx0M«§

wiz')r' W(r )r.

f

5

o u+(2/3)8E, + % 8E,, + % ;::;T'! - 'g-.J.'J

which yields in terms of strain § = (r;-r.)/r.

w(r')r'

ﬂ(r.)r

Ty

(8)

)
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Ay = vk'b'/?-()."/r;)11%371 -[(.01"‘-.3)/r.]6- 1;—-7—517 ) 92

7.
e

In terms of Young's modulus k, and of Poisson's ratio

K /2 = TTET (10)
s0 that we have for the first term on the right of ¥q. 9

e 390 1070 plerrl 47 Aydbery (11)

Numerical Rosults
Table 1 lists the results for potassium, aluminum, and

tungsten, based on the parameters listed and a value of v = 0.3,
The effect of the u term is considerable as can be seen f{rom
the differences in the absolute values of 4u for tensile (§ posi-
tive and compressive (4 negative strain). In the case of
tungsten the values listed are bised on an effective valence

of 5, i.e., the d-electrons are included. It may be more
correct to assume that the largest contribution comes from 8-
electrons, in which case the r value for W would be ~ 3. If
this were the case, the u term would predominate to the extent
of changing the sign of du for tensile strain. It must 2o
added however that in the case of transition metals part of the
work term (or alternately a fraction of Young's modulus) must
be assigned to core-core interactions, so that the effective k
should undoubtedly be smaller then the overall value. This
would tend to deemphasize the effect of the u term.

]9~



ﬁi!!&!l!ﬁlllﬂ&
This research vas supported by the Advanced Research
projects Agency of the Department of Defense under Contract

No. DANC1$-71-C-025) with The University of Michigan.

References
1. W. A. Tiller and R. gchrieffer, Scripta Met., &, 47 (1970).

2. S. Raimes, “The Wave Mechanics of Blectrons in Metals”,
North-Nolland Press (1967).

- : .
[ )



TABLE I
Kreg=>5 Ak ro = 2:1 Hr, = 2
k = .04x10"? 72 =3 k =1x10'? 72 =5 k= 5<0'7

é Ay Al Au
+ .1 -0,09 eV -0.95 eV -0.8 eV
- .1 0.2 eV 3 2 2.0 eV
+.05 -0.06 eV -0.5 -0.3 eV
-.05 0.1 0.6 0.6 eV
+,01 - - -0.1 eV
-.01 - - 0.1

(Positive Ay means a decrease in work function)
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Change in Work Function with Mechanical Stress

We consider at tirst only free-electron like metals
to which the Wigner-Seitz method can be applied.

The average energy per electron is given (Raimes p. 276,

E‘- 9.92’ by

212%/° 1.2z _ .9163%/?

r ¢ r
-] 8 rs

Eo(rs) = g0 + a 2. + w(z"/'rs] (1)

where : a = m/m* = 1; W e
Z = valence of atom

-1
4 é = [9-%£QEJ i.e., I, = atomic ratios in Bohn

-]
units, aH = ,53A,

r, = rs/z'/’

Therefore, in terms of re

_ 2.21 , 1.222/% 916
E(re) €o + 1 —ré-— + re re + W(re) (2)

The chemical potential is defined as

oE onE(r ) ar
rer| | wE(@) +n (3E(r)] [ e}
I on Jv [ 5ne Jv e e Bre v Bne o



or - Vv - 1l & = v re v B re
oE
. rer \.21 l.zzz/l .916 .88
an = g + =+ - _
ne JV r() re re re+ .
s 22:20 1 1.222/° 1 .916 _ 1 .88r ‘
I Ta T 3 T I T
e e e
33r
% 2 4 .
€g + 3 Lk + 3 ECX Wil + E_;ngl
2,21 1.222/% 916 af
where E, = 222, E _ . fhe B
k rd cxX e .4 P

Now a strain, caused by mechanical work increases nE(re) =

= 2 =
r'r by AU V §¢/2 (8 str

volume per electron

AU = v ¥.2/2 = Agqy + AE,

ain; k = modulus).

+ AEcx + AW

Thus if v =

where A = fire') - f(re) with re' referring to effect in the

electron radius for the stra
AEo = AU - AE

Whence

5
3 AE, + A

Wl

H"'N = Aegy + k

Ay = AU + % AE, + % AL,

ined system. Thus,
x = AEcx - AW
.33W'r' .33Wre
Ecx + AW + _T:VTF- ?;:775
AW+ . ...,
«33W'r! .33Wre

e
x ¥ ré+7.§ E;+ .

=23-



! romn 'l c/a(e=x') _ r-r'
K62/2 + .66 x 2,21 =ty + .42 /3|25 - 305 | g

. 2/3 .
st - KET/2 6 1.47 - B2 - SMAICAr , 30mar S

where we have approximated
r2-r'? _2r Ar _ _ 2Ar
rir'? rir'? - 3
2
would be better as - Aé%—l

2 2 )0 - A(r? Ar L 2/3 .293 Ar
Aué = VeRG /2 1.47 Fsrr-;' + F[.305 .42 ] + TEFT B)2

2
au = k8272 - 1.47 HEL - g(.4z?/0-.3) - .29 &

We need now a relation between AU and Ar

el 3 40
First Ve 3 moay T4
- 3 .0
& Ave 4 7 aH re
Av Ar Axr
and —2 -3 also, é% =3 L 2=
e e e

Av

2
v] per unit volume,

AU for compressive stress is 3 l-v [
where k = Young's modulus, and v = Poisson's ratio ~.3 _ )

. AU/electron is
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1

L L

A

L ¥

= % " aﬁ k' (9) reAr; in ergs

To convert to Rydberg

AU = 3%3.14x(.53)'x10-2"x9 ' (Ax) 2
4u x9x2,18x10" k'exponem:l re(AL)

2,6x10-12 k! re(Are)2 = 2,6x10"!% k' r; 62 Rydberg

or
M = v, k'[A§J2 .3
= v, k' 982
= v, 35 oT of ergs
v_x10-!!

" ~E  Ti-zey &' Rydberg

? = metal density

Ve " ERIOTYZ * "

(py/2)k' 962
o AU = §03% 5 = Rydberg

- (PW/2 k' 8% x 5,3 x 10719

-13 3
2,6%10 k Teo

0 2
AU =) )




let ve .3

=19

» 1.1x10°'? :: §6’ = 1.1(k/1o"):; é?

Now
12y,.8 22 . _1.47x _ (.43%/-,3)
8w .11(k/10'")x} & 7};377§z . r s
.29c
+ Ser &
lr.’,o!rr
r = 2 2 =]
“

Let & =41  ghry e 2

Sy = 1.1x3x2x,01 - l:ﬁ%:;l - ;A;;l " .s?x.;

.16 - .074 - .00%

= £.08 Rydberg = 1 1,08ev

é = 4,05
Ay = .16/4 - .037  ~-,002% = ,0005 Rydberg
= 006eV
For Al I%fy = ,14
o500 39 k = 011 45 o) = .86
2.1 Al 27 ke 1 10/3 py = 2.7
2.02 W 184 k =5 (9.9/5) p = 19.3
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Vg AY = 74410 (v/5)V/?

4 Voo = i '/

" - I "E:ill/l
e N (<] ts
U E k #10'7 = ,04 £y = S
by = .0044n12s ¢7 - gl b Lol s L3 s
® .55 87 - 118 qrioy - 026 + .0092
for 6 = +,1 (dilation) for § = -,1 (compression)
bu = ,0055 - .0098 - .002 - .0009 +0153 Rydberg
* 22006] Rydberg = -, 083gy * J28Y + J2e¥

for § = +,05
&u = ,0013 - ,0005 - .001 + .0005

= 40030 Rydberg = ,0fgy

al

ke ] r, ® 2.1 $ =)

by = .11%9,16? - °?‘ TI%ITT - 24 Zig;--J P

= 14" - 685 qriyyy - 2548

for § = +,1

. u = ,0]1 - .0865 0254 = 'lﬂ! Rm‘tq - -.:ilx



for 6 = 0.1
Ay = 4096 Rydberg =~ ),2qV

d = .05
,0025 = .031 - .012 « Q0,04 Rydberg = =, 248V
6 = =,08 $:045 Rydberg = t.6eV
|
K=S E. =3 2 =5

2.94 _ 8 _ .87,
g 2

Ay = .88x56% - W

4,487 - 735 qriyyy - 4356

for 6 = 4,1

Ay = 044 - .06 - 043 = -,05 Rydberg » =

4 = -01
for § = .05 _
Ay = .011 - .033 - .0217 = -|Qz‘ Rde‘rg L -,;ZQV
§ » -.05 2046 Rydberg = +,62eV
for § = .01

Ay = .00044 - .0072 - .0044 = -,0]11 Rydberg = -,
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NOTE ON DENSITY DETERMINATIONS
ON AMORPHOUS MATERIALS

Robert Gomer

Abstract

A possible method of measuring the density of amorphous

films is described.



NOTE ON DENSITY DETERMINATIONS
OF AMORPHOUS MATERIALS

Robert Gomer

It appears that the determination of the density of
amorphous films, for example of Ge, is of some importance
in the interpretation of the optical electrical and structural
properties of such materials. The following scheme may be
useful in this connection. 1In order to determine the density
it suffices to know the mass and volume of the film. The
former can be determined with great accuracy and sensitivity
by means of a quartz oscillator microbalance!. The volume
can be obtained from a knowledge of the area of the quartz
crystal onto which the film is evaporated or sputtered and
the thickness of the film. 1If the film is thin enough for
optical transmission its thickness can be determined accurately
by ellipsometry?.

For opaque (but reflecting) films interferometric
technigues also exist® for determining film thickness, 1In
order to compensate for the roughness of the original quartz
surf#&e, which may well be of the order of 10005, it might
be necessary to evaporate a pre-deposit of this order of
thickness, of the material to be studied, heat it to near
melting, and thus obtain an artificially smoothed surface.

If a mask of somewhat smaller dimensions is now put in front

= Y=



of the quartz crystal, the weight and additional thickness of
any further deposit may be determined with respect to the
smoothed substrate. The degree of roughness of the original
quartz and of the smoothed surface can of course be determined

interferometrically.
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MODIFILD NULL=-FLUX MAGNETIC SUSPENSION
AND PROPULSION S8YSTEM FOR NIGH=-8SPEKD TRANSPORTATION

M. ‘I'inkham and P. L. Richards

Abstract

A detajled Fourier analysis is given of a new hybhrid
system for magnetic suspension and propulsion of high-speed
trains (~300 mph). The hyvbrid system combines the advantages
of null-flux (low drag and feasible synchronous propulsion)
with those of the image-force scheme (a cheap smouth track,
typically 1/4" aluminum sheet); its disadvantage is that {t
requires a double set of opposing train magnets (as does one
of the null-flux system already proposed Ly Powell and Danby).
The analysis shows that a drag/lift ratio as low as 1/80 should
be obtained with reusonable parameter values, far superior to
any simple image-force system, and much less than air drag
over the useful speed range. Another advantage of this system
to the image-force scheme is that its strong magnets facilitate
synchronous propulsion. It is shown that the active track re-
quired for this propulsion could be energized in sections of
several miles without undue power loss. The stability of this
drive is studied, and shown to offer no serious problems for

small fluctuations, but there may be a serious problem in main-
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taining synchronism during planned or accidental or accelerationn

and decelerations.
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Introduction

Richards and Tinkham have presented an analysis* of
magnetic levitation of high speed trains which compared two
proposed systems: 1) g3 periodic array of magnets moving over
a conducting ground pPlane (the "image-force" scheme) and,

2) the Powell-Danby "null-flux" scheme. The latter uses a
symretric system of coupled coils for the track to obtain
lower drag, but at the expense of a more complicated track
which would increase costs to some degree as well as introduce
4 certain amount of vibration in the suspension.

It has been suggested** that a modified null-flux
scheme using a thin conducting sheet (rather than coild)
between two sets of opposing train magnets might combine the
low-drag feature of the null-£flux scheme with the simple smooth
track construction of the ground nlane scheme, at the expense
;}'Qoubling the magnet requirement on the train. Since there
will be hundreds of miles of track, and relatively few trains,
such a trgahotf could be quite attractive. A further advantage
of the null-flux schemes ig that synchronous pPropulsion by an
active track is facilitated by the stronger magnets which such

schemes use to get a stiffer, lower-drag suspension than is

feasibie in image-force suspensions. Since dc superconducting

magnets use no power, it is evidently desirable to capitalize

*Last year's ARPA Report,

**By the Ford group (Reitz and Borcherts), indirect private
communication.
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on the cheap availability of such strong fields.
In this report, we present results of an analysis of
this modified null-flux scheme which confirms that .uch a

scheme offers some very desirable features.

General Expressions for Lift and Drag Forces

We assume throughout that all fields vary as elkx,
with k = 2n/2x,2x being the magnet period. Then the lift and

drag forces per unit area are given by

= = - ..].'. *

FL Fz = 5 Reij Bxdz '
Ea =RF7 = 3 Re|J * B _dz

D %" @ y ‘z° !

where r.m.s. values are implied throughc it, and the integration
is through the thickness of the conducting sheet. It is con-
venient to re-cxpress these results in terms of the field only,
using Maxwell's equations VxB = %; 3 and V+B = 0. Thus

oB_¥*

= - 1 X
P, = An Rej[ e + isz*}Bxdz

3B
= f{%|ax|2 + 2Re ikb * [1!; _S%D dz

& [ & [Is07 + I8,1%]az

=

1 2 2 2 _ 2
g—ﬁ{luﬁl 5,17 + [5,,| IBzul},

where %,u refer to tne lower and upper sides of the plate.
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This result could be written down by inspection ag the differ-
ence in the magnetic Pressures on the two sides of the plate,

Under all useful regimes, IBZI << lel at the surface, so that

this can be simplified to

2 2
F. = lfxﬁ' ,Bxu, (1)
L 8w
=L Re B * ap la)
i X X 0 (1a

where ABx S (Bxﬁ-uxu) measures the net current in the sheet
and Bx 3 (Bx2+Bxu)/2 is the appropriate average field.

Similarly, the drag force is

oB¥ :
1 X
FD = (T‘ﬂ'-} R6f [-5—2_ + isz*JBz dz ’
The second term is purely imaginary ang drops out. Using

V'B = 0 and the skin effect equation

-  _ 92 2i
2 - R I T :
where
62 = c?/2n00 = c?/2nokv ,

the first term can be transformed so that, after dropping an

imaginary term and dropping the minus s8ign to get the magni tude

of the force, we have
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D 27k&*® z
=g§junz|2dz (2)
-1 v 2
T2 v <|Bz| > av ' (2a)

where v, ™ c?/2nud is the characteristic velocity (~15 mph for

a 1/4" aluminum plate) introduced in our previous report. This
result can be obtained more simply (but with loss of sign infor-
mation) by considering the power dissipation JoEyzdz, where

E_ = (v/c) B, and equating it to F_v.

y D

The results (1) and (2) are general formal results,

not limited to the thin sheet case.

Determination of Fields

The fields in the sheet are determined by matching them
to the external fields at the boundaries. These external fields,
being periodic in x, are exponential in z, and have the general

form

The magnet currents uniguely determine the strength of the term
which decays toward the sheet. This, in turn, fixes a linear

combination of the field and its derivative. For example,

l dB _ kz

If we specify the strength of the source in terms cf the field

=30~



Bo at the height h of the magnet above the sheet, then

B+ekh = B,. Thus, the fields just outside the upper and

lower surfaces (at z = ‘d/2) must satisfy

-kh
1l dB u
B+F3?Iu=2Boue i T
(3)
~kh
1dB| L.

Using div B ang curl B = 0, B; = -iknx and B; = isz.
Eliminating the normal derivatives ipn this way, the boundary

conditions become

(3a)

The conditionsg (3a) are niore convenient that (3), since B ig
continuous across the boundary, whereas de/dz is not,

We now must fing the field inside the sheet consistent
with these boundary conditions. Botp components of thig field

obey the equation

2 _
VB—FB '
so that
d?B 2i 2i
m=[ﬁ*"’J”*3‘zB ' L

2

since (k§)? (2n6/£x)2 is typically ¢ 1%.  The solutions of
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this second-order differential equation have two adjustable
constants, which can be taken to be the value and slope at
2 = 0, the midplane of the sheet. Then the solutions have

the form

187 <

Bl{z) = B(0) 1*—{7-8'3-:4..o

+ B'(0)z 1 + % %; - f% %; ¥ s (5)

Moreover, the Maxwell equations relate the x and z components

as follows:

B
2V 2 2V
D; - [q + ikd] o - m Uz ¢ (6a)
B; = =ik Bx 0 (6b)

where again we have dropped kd compared to v/vo, since for
useful ranges of parameter values, kdvo/v < 0.01. Thus, the
internal fields are completely specified by any suitable pair
of parameters among the set ux(O). B;(O). Bz(O). u;(O).

In applying the boundary condition (3a) to determine
these parameters, it is convenient to form the sum and differ-

ence!

b, + by = (B, +B,) +i(B,, = B,,) '

(7)

by, = by = (B, = Bg) + (B, + D) '

or, using (5) and carrying only the leadins terms in d°/8’




bu + b‘ » 2Bx(0)(1 + 1d2/487%) » LH;d(l + id?/1247),
by, = by = B (0)d(1 + §d7/1247) + 2iB_(0) (1 + §a7/487),
Replacing the derivatives using (6), thia becomes
by ¢ by = 28, (0) (2 + jd?/48%) » kdBs, (0) (1 + id’/1247),
* 2B, (0)() + id?/48?) (8a)

since kd << ], Similarly, one finds

v da? 2
bu-bl-znzw);g(1+{-”,]+ [1 -t . e

Now, if we drop the correction terms in d?/8?, (8) leads to
the simple results:

bu+bl

B (0) = N L :

bu-bl

Bz(O) - §7V7V:7TT P (9)

which complete.y determina the field (and hence the force) in
terms of the source atrengths bu' bl’ Since dotajled examination
of the effects of the d’/4? terms shows that they lead to
corrections in the forces which are typically <d?/1047?, we ex-
pect these simple results to be quite reliable so lony as d<4,
Although the detafled formulation given here is noeded to in-
vestigate how good the approximation is, these nimple results

can be obtained by considerably more clemontary means.
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Computation of Force:

Using (1) and carrying only leading terms, the lift

force FL can be written

d

» = -L Y -
EL - Re u; Aux ] Re ux(O)' n;(O)

d |2v
& -VO—JJ Re B:((O) Dz(O)

(10)

< *
v, Relbytb )t ST

2.y, ?
bu b,

= 1
Bn 1+vo’/v’ i

(The change in sign convention relative to (1) arises since we

want the lift force on the magnet structure, not the track.)

We take bu and h, as real, which can be done so long as the
upper and lower magnet structures are not rclatively displaced
along the x-axis. 1In view of the definitions of bu and bz in
(3), we see that this reduces to our earlier result for the
single-sided case:

B’ o-2kh F

L] = >
L m—— o Iev T/VT I¥VO57V’
sided

F (11)

(The old formula had no’/dn rather than Bo’/zn because B_ was
a peak value; herc it is an RMS value.

Now let us consider instead of a symmetric arraagement,
one with displacement 4h from the symmetry plane, the configu-

ration which provided the motivation for this analysis. Then

-43=



-k(ho-Ah)

bu = ZBoe '
(12)
~k(h°+Ah) -
bz = ZBoe
8o that
B 2
g .5 5B e-2kho sink 2kAh . 2 B 2e-2kho kAh
L T T+v057v5 ™ "o I+v0’7v5
(13)
- kdh
E R, TN

0
since kAh will be small in reasonable applications. As expected
in a null-flux geometry, the lift force increases linearly with
the displacement from the symmetry plane.

Using (2), the drag force is

da/2

= —1— X- 2 o .l. L !’. 2

% 2m v, <!Bzﬂ ¢ b I v, d f IBZ(O) + Bé(O)l dz

-d/2

= 1 .X_ 2 1 2 2

W |B,(0) % + [B}(0)]? a%/12
- Ao 2 k2d? 2
I |B,(0)|* + Z5-|B, (0)] ' (14)
(b -b )2 2497
Y % u_% k*d 2
80 Fy = 77 v, T&vIN T M (bu+b2) . (15)

Again, this reduces properly to the usual single-sided result
if one sets b, = o and drops the negligible term in k2d?. But
for the nearly symmetric case, this term cannot be dropped

since it provides irreducible minimum drag even when b, = b,.
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Using (12), the drag force becomes

-2kh s 2 232
= B e o v  sinh® kAh _ k°d 2
FD ol Boe v, l+v27v02 + 15 cosh® kAh
N 2. Bze‘Zkho l_, kz (Ah)z - k2d2 (16)
T "o v, l+v2/vo2 12 !

for small displacements Ah.

To carry the analysis further, it is convenient to
examine the drag normalized to the lift, which will of necessity
have the constant value Mg, where M is the mass/area of the
train. (This is just the reciprocal of thc more commonly used

lift-to-drag ratio.) Combining (13) and (16), we have

2 2
o, v ki(n)? k2 WV /Y
F, v, l+v2/v&7' 12 kAh
_ a2 Vo , kd? v

~

In the useful regime where v > v, and d < Ah, the correction

term d?/12(Ah)? is always small. Thus we can write

":ll"!!
o

v 2
i 0 kd \4
= kAh — + T37E "—o . (17)

This normalized drag has a minimum value

L'nin /3 /3 Ay 80

at a characteristic velocity

2
v=2/3v - /3 e bh oo mip.h. (19)
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(The representative values quoted are for a 1/4" aluminum
sheet, a magnet period of 6 feet, and Ah =~ 1/4".,) Thus, (17)

has the normalized form

idd? - -1-[3 + X] (20)
ZFD7FL) - T 2N v )
min

Note that the drag is within 25% of its minimum value
over the velocity range from V/2 to 2V. Thus, if 2V were
chosen to be the full speed of the train, say 300 mph, then
the drag from 75 mph to 300 mph would be nearly constant and
well below the air resistance over most of this range of
velocity. Even down at 30 mph, where v = 2v0, so that F, has
reached 80% of its high-speed value, allowing the magnetic
suspension to take over from the wheels, the drag would be only
about 3 times its minimun value, giving a very acceptatle lift/
drag ratio of about 25, On the other hand, the lower value of
V in the above example has the advantage of lowering the mag-
netic drag at low velocities (where it is the dominant drag),
while allowing it to rise at higher velocities, where it will

still be dominated by air drag. This is illustrated in Figure 1.

Magnet Reguirements

The above very favorable estimates hinge on the
assumption that the magnet strength required by Ah = 1/4" is
reasonable. This is determined by the relation (13), which,

for v >=» v, can be written

-46~



Mg = F, = F_ KkAh ; (21)

]
L "
where

-Zkho
F = (2/n) uo’e . (21a)

“w

In this, B, is the rma strength of the fundamental Fourjer
component of the x (or 2) component of the field in the maynet
plane, and ho is half che separation of the upper and lower
magnet conductors. Bo’ in turn, is (2n/c)90, where 9’0 is the
rms value of the fundamental Fourier component of the magent

current. ‘That is

2
o 2 -2 201 ["x -ikx
b, = & 90 ¥ I gy(x) R ax . (22)
o]

(The curious factor 2//7 is inserted to take account of the

'ikx in the real field, and to

existence of equal components -e
convert to rms values.) A simple example is a sequence of
magnet loops lﬁx/Z) long, producing alternately up and down
fields. If the current in each if Io' the transverse currents
add, and are equivalent to currents °21° spaced nx/z apart,

Then

8/2 n

o] c

I0
I; = 4/2 kI_/c . (23)

Thus uo is simply proportional to the tranaverse magnet cusrent

per unit length of train. From (21) we have

-2kho

n Mg e
-'2'_9'[!;7?__ 3 (24)

Ah w

A
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Holding Do (i.e., the average current density along the train)
constant while varying k, the minimum Al (i.e., the strongest

1ift) is found for

k = 5]]0 or lx - ‘ﬂho ¢ (25)

for which case
Ah M
- R@ - (26)
he B,7

It is worth noting that for this value of k, the fundamental
Pourier component accounts for about 87t of the total lift.
Hence the single Fourier component approximation should be
quite good, even for this simple current pattern, so long as
lx is not greater than 4uho. If we separated the successive
loops by 1x/6 (as outlined in the appendix of our earlier
report) to cancel the Ird harmonic content, the fundamental
component would give about 98% of :he lift at this spacing
(lx - 4Ih°). If we now take a reasonable magnet current

lo = 300,000 amperes, uo > 35,000 Gauss/lx (feet) ~ 6,C00
Gauss. Assume a weight of 100,000 1bs. supported by a magnet
structure 100 feet long and 3 feet wide; then Mg >~ 160,000
dynes/cm’. Using (26), we find

2 - 0.04 (27)
o

80O that Ah = 0.04ho - o.OClx/dn * 0.2%, very near our design

target. Thus, there scems to be no difficulty in finding a |
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recasonable combination of parameter values.

Optimization of Parameters

Now let us explore the possibilities for optimizing
the parameter choices, subject to the constraints of the
problem. These include the following: the minimum drag ve-
locity V should have a set value in the range 50-150 mph.
Since V - Ah/od?, this combination is thus constrained. For

a M e2kho ‘
given Bo and Mg, Ah = 3 517 s el To avoid excess harmonic
o
content, with its higher drag/lift, we require %} =L, 4ﬂh°,
the value giving maximum lift for a given Bo. Subject to
, . kd

these constraints, we want *o minimize (FD/FL)Imin 7 by
varying d, o, ho' ah,

Making appropriate substitution, we have

2kh %
o| . kd k[__‘-" Ah]” . |Macike 2f (28)
F; min /3 /3InaV Bo2 2/3 0V

Clearly this would be minimized by making k as small
as possible. But if k < 1/(2ho), the harmonic components of
the ficld increase the drag, and also the lift for given B
falls off. Thus, we are limited by that value, which also

has the desiravble property of giving maximum lift. Thus:

F W
F_D| > |—tiile.c
L'min B ' 4/3 h oV

According to this, one could lower the drag indefinitely by
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increasing ho. But this is limited by the fact that we have
neglected the effect of the finite width of the magnet structure,
which limits the validity of our one-dimensional solution. As
shown in the Appendix of this report, however, the one-
dimensional solution is quite a good approximation so long as
w2 Ex/2 = 2nh_, where w is the width of the magnet in the y-
direction. 'T'hus, we want to have ho < w/2n. The width also
affects the weight Mg per unit area of magnet, since M'g = wMg,
the weight per unit length of train, is really the fixed

quantity. Using these considerations, (29) becomes

F
°D , [re Mg c? g (30)
Primin = \2/3 Bp? oW .

If w is limited to =3 feet, the values used in our numerical
estimates (lx = 6 feet, ho = 6 inches, Ah = 0,25 inches,

V = 50 mph, v (aluminum) effectively reachew this absolute
limit for any given (M'g/Boz).

Summarizing the optimum design relations:

zx/z = 21rho = W 0 (31)

so the coils are approximately square. With these relations,

AR - (32)

o
o -

Of course, considerations of cverall system optimization need

not coincide with minimizing the magnetic drag alone. For
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example, efficient synchronous propulsion favors a slightly

smaller value of Ex.

Linear Synchronous Propulsion

We can take advantage of the powerful magnets in the
train to make a simple, efficient linear synchronous drive
system using an active track structure to produce a traveling
magnetic field which pulls the train magnets along. The phase
velocity v¢ of the field is le, where v is the frequency of
the field and £, is its spatial period (the same as that of
the train magnets). If we restrict attention for simplicity
to a single-phasc drive, the track winding could have the form
indicated in Figure 2. A current I makes a complete circuit,
out and back, from a source at one end.

For a specific example, let us assume lx = 2w, so the

loops are square. In that case, the total length of conductor

is 4x the length of track. If the conductor were 1" x 1" square

aluminum bus bar, for example, the round trip resistance would
be ~0.25¢/mile of track. For comparison, a typical effective
train resistance is 1.50 (corresponding to 0.lg drive force

at 300 mph, which requires 6MW, and assuming a drive current of
2000 amperes.) Thus, with such a heavy conductor, track losses
would be less than the uscful power even in a track segment
extending for 5 miles in either direction from a power source.
The track inductance will be ~0,006 H/mile, which gives a

reactance of ~2.5i/mile at 60 Hz, a representative drive
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frequency (corresponding to 250 mph and Rx = 6 feet). Thus,
in a track run of a mile or more, the inductive reactance
would dominate the impedance seen by the source despite the
load due to the train, giving a poor power factor and requir-
ing a high source voltage. These considerations might make
relatively short runs, using thinner drive loop conductor,
supplied with power Ly high impedance transmission lines through
step-down transformers, and of course only switched on when a
train is passing over the section, more economical in terms of
total costs. In any case; it seems almost certain that the
track inductance will effectively filter out any harmonic con-
tent in the output of the variable-frequency power source, SO
that the drive cﬁrrent may be assumed to be a pure sine wave.
The instantaneous drive force on the train is equal
and opposite to the total force exerted on the track loop con-
ductors by the field of the train magnets. Because the spatial
period of track currents and train field is the same, the force
on each track conductor is the same. Thus, we may restrict
attention to a single one, of length w, carrying a current I
in the y-direction. Since the local drive force is E ‘=0 Bz/c,
the total force per conductor is (I/c) fBzdy = I wﬁz/c, where
Bz is the spatial average of the field of ti.e train magent along
the track conductor. Since I(t) is a pure sine wave, only the
fundamental component in the Fourier analysis of ﬁz(t) (which

arises from the fundamental spatial iwurier component) gives a

=5p=
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non-zero time average in the product. Thus, we can write the

time~averaged propulsion force per conductor as

F.==1I(w) B (w) cos ¢ ,
P rms z,rms

al<

where ¢ is the phase angle between the current and field, and
w = kv = 21rv/2.x for synchronous operation.

In our simple Fourier analysis of the fields, we have
no variation of B, with y, so that RMS values are given by

kKl «kh

_ - ~kh _ 0 =
B, =18, =B = 4/2 — e , (34)

where B, specifies the train magnet strength in its own plane
and Io is the current in the train magnet loops (as discussed
earlier) and h is the separation of the magnet plane from the
plane of the track currents. Thus, the average propuisive

force per track conductor is

~kh
= 4 ﬁZEEE___ fow cos ¢ . (35)

F 2
p c o “rms

This result may appecar unfamiliar because of the exponential
dependence arising from the Fourier analysis. However, if one

takes the separation h to be the same as the ho ~ 1/2k, which

was optimum for the levitation case, then the factor ke-kh

-%

— e ; : q ~
= 3p ¢ and one recovers the more familiar form Fp Io Irms w/h.

Since the actual conductor array in the train magnets
doces not extend to y = t», as assumed in the simple model, but

rather consists of approximately square loops, one might

question the quantitative reliability of (34) as an expression



for the strength of the fundamental Fourier component of Ez.
To test this, we have developed an exact formula (sce Appendix)
for ﬁz from a rectangular current loop of the same width w, and
we have numerically estimated the strength of the fundamental
and third harmonic Fourier components for the special case of a
series of square loops. The results indicate that the Fourier
coefficients computed for these two different current patterns
differ by only about 10%.

Some insight into this result is given by the following
observations: The field in the center of a square loop of edge
w carrying current I is 8/2 I/cw whereas the field midway between
two infinite straight wires separated by w and carrying I is only
8 I/cw. Thus, closing the loop gives a higher f’eld than ex-
tending the parallel wires to infinity. On the other hand, if .
we take account of the presence of two wires on each side
(because of the contiguous loops), the parallel wires given
16 I/cw. Similarly, taking account of the two adjacent loops
(by a dipole approximation) in the loop configuration, each
contributes u/w?® = I w?/cw?® = I/cw, for a total of (8/2 + 2) I/cw
= 13.3 I/cw. If we continue both <alculations to convergence
for an infinite series of parallel wires or squarc loops, the
results are ~12.5 I/cw and ~13.1 I/cw, respcctively, again
differing by less than 10%.

Returning now to the real case, in which we are inter-
ested in the strength of the fundamental Fourier component

averaged over the width w in a plane separated from the magnet

L§da



plane by a distance h, rather than the value of the field at
the single point in the center of a loop, the corresponding
numerical results are ~15 I/cw for the parallel wires and
~17 I/cw for the square loops. [In these estimates we have
taken h = w/6, a typical value; also, they must be reduced by
a factor of /2 to correspond to the RMS value (34).]) The fact
that these coefficients are greater by some 30% than those
found above reflects the fact that the third harmonic amplitude
is ~1/3 the fundamental amplitude, and the third harmonic tends
to cancel midway between conductors, while adding to the funda-
mental near either side. This causes the field to sag in the
middle, as indicated in Figurc 2(b). We conclude that for a
typical geometry the simple Fourier analysis result may under-
estimate the drive force by ~10%, but that it is good enough
for preliminary estimates.

For these estimates, it is convenient to characterize
the propulsive force Fp by an equivalent acceleration g'. If

M' is the mass of the train per unit length, then

4
Mlgl =F . ’
P4,
or
; =2vh/2 I I
g_ & ﬁggézg 5 & —2—§E§ cos ¢ . (36)
X

Taking the reasonable values M'g = 100,000 1lbs/100 feet,
w = 3 feet, b & 6 feet, h = 6 inches, Io = 300,000 amperes,

this leads to
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g— = 0.5 x 10™" Irms(amps) cos ¢ . (364)

Thus, a drive current of 2000 amperes would provide up to
$0.1g, depending on the phase of the train magnets relative

to the current in the track. Evidently the drive current re-
quirement could be reduced further by increasing the width (w)
or strength of the train magnets (Io) or by reducing 2x and/or
h. For a typical clearance h = w/2m between train and track,

given train current density (Io/ﬁx). and given track dissipation

2
rms

pulsion is 2 = /2w = 2/2nh. This is not very different from

per mile ~I (1 + 2w/£x), the spacing ﬁx giving maximum pro-
the condition (25), Zx = 4nho, for maximum lift at separation
ho between magnets and the conducting plane. Thus, if ho =+ h,
as is reasonable, the same value of Ex will be close to being

optimal for both lift and propulsion.

Transverse Stability

The tight magnetic suspension of the wide magnet coils
all along the train will provide a very strong restoring force
against uniform vertical motion, pitch, and roll.

A magnetic restoring force against uniform sidewise
motion and yaw can be established by vertical conductors along
the edges of the conducting sheet track as shown in Figure 3.
Since this conductor would not enjoy the benefit of a null-flux
conficuration, its contribution to the drag will be significant

if the restoring force is made very strong. This drag contri-
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tribution can be vutimated as follows: The force Fy will vary
ay szy. ‘Thus,
darF

& L = 2 :

y

The associated drag force (assuming the vertical conductor is

thicker than the skin depth &) will be given by

FD = ké Fy ’

drawing on the results of our previous report. Thus

dF

2
ot
I1f we want a restoring force to give an acceleration g' at

displacement Ay from equilibrium, we have
Mg' = £ F Ay :

pividing by the weight of the train, and rearranging, we have

&)

&y 2 L

Taking the represcntative values § = 0.4" and g'/g = 0.2 for
a maximum excursion of Ay = 4", this gives FD/FL = 1/100.
Since this dirag would double (because § doubles) on reducing
the speed from 300 mph to 75 mph, this draq is not negligible.
A carefu’ analysis should be made to find how strong the re-
storing force must be for proper operation. If the drag from

this form of lateral stability scheme is excessive, one could



instead derive the restoring force from a more complex arrange-
ment of null-flux conductors. For example, one could use a
pair of magnet arrays, canted up from the horizontal on either
side of the center line, to derive a centering force from
gravity. Alternatively, one could use a separate null-flux
arrangement with vertical coils to provide a transverse rc-
storing force. This scheme has the attractive feature that the
drag would be essentially zero in the centered position, and
considerably smaller than (37) when a restoring force was

gencrated in an off-center position.

Longitudinal Stability

It is well-known that there is a potential instability
associated with a drag force which decreases with increasing

velocity. 1In general, we have

Q..IQ-
i<

M = E_ & FD(V) ' (38)

p

where Fp and FD are the propulsion and drag forces, respectively,
If one attempts to maintain a constant velocity v' by setting

Fp = FD(V'), we have, for small changes in velocity,
M 2 s F o= Fy(v') = FL(v') (v=v')
dt p D D .
Now, if Fp remains constant, this leads to

M d(v-v')/dt = =Fj(v') {v-v') '

so that
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(v=v"') ~et/T ' (39)

where the time constant 1 is given by
T = -M/Fb(v') . (39a)

Thus fluctuations in velocity will grow exponentially if

T > 0; that is, if Fé(v') < 0, as is always the case for the
magnetic drag in conventional image-force or null-flux schemes.
In our hybrid schucime, however, tha magnetic drag increases for

v > V. When the air drag is added in, all these systems become
stable in this sense at sufficiently high velocities. The hybrid
scheme is again most favorable, becoming stable somewhat below

V, which might be ~50 mph. In fact this instability is not very
serious because T is so long. The expression (39a) can be re-

written in the form

=1
=y fLo-v o (40)
w oo Y ,
g Fy Fp dv

from which we see that at 100 mph, 7 is typically 200 seconds.
This is slow enough to permit stabilization by a simple feed-
back system.

More fundamentally, the above analysis is incomplete
because it is bascd on the assumption that the propulsive
force Fp remains constant, independent of v. This might be a
fair approximation for propulsion by a jet engine, but it
certainly is inappropriate for either of the two magnetic drive

systems which arc under consideration.
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In the induction drive system, the propulsive force
is of the form

Av/vo
F_ = 2F

P o I+{Av/v 72 ' (41)

where Fo is the maximum propulsive force, which occurs when
the slip velocity Av = vw-v relative to the traveling magnetic
field has the value v, = c?/2m0d (~15 mph for 1/4" aluminum).
So long as Av < Voo (41) gives a driving force tending to
stabilize the velocity. 1Instability could result only from
fluctuations large enough to decrease v to a value near (v¢-vo),
where the propulsive force reaches a maximum, allowing the de-
stabilizing effect of FB < 0 to reassert itself. By operating
at a slip velocity well below Vor €.9. with Fp = Fo/2, such
fluctuations can be excluded. Thus, with a suitable choice of -
v, for the reaction rail, one could certainly produce a stable
propulsion system using a linear induction motor.
The stability analysis of the linear synchronous drive
is more complicated since the propulsive force Fp depends on
the instantaneous displacement between the driving field and j
the train'%agnets, rather than on their relative velocities.

That is, our equation of motion becomes

dv _ . - - i
M3E = Fo sin k (v¢t X) FD(V) 5 (42)
In synchronous motion, v = dx/dt = Vor and x = -x, + v¢t.

Thus, the equilibrium lag X is determined by
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ay

Fo sin kxo = FD(V’) -

"xpanding about this operating point,
dv . o 0
LY -F, cos k(vOt-x) kdx - ¥ (v ) Av

-_2_-2 5 -
F F (v ) kiAs PD(v ) Av -

¢

If we now assume that Ax and Av vary as eiwt, this requires

that
-Mo? + 1Fju + k(F2-F2)" = 0 ,
or
i a_po2y b _ 1 L
woa s e f -(F -PD) - T ' (43)

where 1 = -M/F ¢) was defined in (39a). Note that if Ps = By
so that the propulsive force is constant at its maximum value,
this reduces to the exponential solution (39), which describes
an instability if Fé(v') < 0. In normal operation, however,

FD ~ Fo/z, and w becomes predominantly real. It is convenient

to define a natural frequency of longitudinal oscillation by

2 = = =
g Fok/M gpk 21rgp/£x ; (44)

where gp E FO/M describes the maximum acceleration capability
of the propulsion. For the typical values zx = 6 feet and

gp = 0.2qg, (wo/Zn) = 0.4 Hz. Since g * l/t, we can approx-
imate (43) by
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w e 2 ) - (rD/roy’lh - i/21 . (45)

Thue, if F6€v¢) < 0 so that v > 0, there will still be an
{fnetability, but in the form of an exponentially growing
oscillatory motion.

Using the parameter estimates above, the amplitude
would increase a factor of e in ~7 minutes, during which some
1000 oscillations about the equilibrium displacement x would
occur. Again, dynamic feedback could be used to damp out such
a weak instability, However, there is the following automatic
stabilizing effect from the induction force which arises if v
departs from its synchronous value v°. (It is the analog of
the use of "damper" windings in a rotary synchronous motor.)

For small departures from v¢, (41) becomes
Fp = -ZFI(v-v¢)/vo ' (46)

where F is the maximum induction drive force from the eddy
currents "incidentally” induced by the track coils in normal
metal surrounding the superconducting train magnets. When (46)
is added to the right member of (42), it replaces -FD(V¢) by
[-FB(V¢) - ZFI/vo] in the equation of motion about the operating
point. Thus, the exponential will become a decaying rather than

growing one provided that
F; > -Fé(v¢)vo/2 . (47)

If one estimntes FI = Fo(Itrack/Itrain) w Fo/loo, and
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-Fé(v¢) = FD/ZV S Fo/4v, this leads to the requirement that

v, * v/12. bsince v = 4 mph for 1" aluminum plate, we see

that this inductive stabilization effect could be quite sub-

stantial. The only troublesome regime will be the low velocity

one, in which some sort of wheeled support would be used in any

case, so that an analysis of specific systems would be required.
In summary, after taking account of air drag and the

induction effect, the linear synchronous drive will be stable

at most velocities, particularly with the hybrid levitation

system, and any instability would be so weak that it could

easily be cured by a simple feedback system.

Acceleration to Spced

In addition to the question of stability about a desired
velocity, just discussed, there is the question of intentional
acceleration and deceleration to change speed. This is relatively
simple in the case of the induction motor, since there is sub-
stantial propulsion over a wide range of slip velocities. Thus,
amplitude control could supplement frequency control to a con-
siderable degree in controlling acceleration.

The problem is more severe with the linear synchronous
motor, a reflection of the notoriously low starting torques
of ordirary synchronous motors. This means that a variable
frequency source to vary tlic synchronous speed v¢ = le will
be essential, at least during planned accelerations, and

probably throughout the track for reasons of safety and con-
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venience in unexpected situations. So long as exact synchronism
is maintained, the full drive force given by (35) and (36) is
available. But, how large is the velocity range from which the
drive can pull the train into synchronism?

This can be estimated by using the equation of motion
(42) . (The inductive term (46) is negligible.) If v # v¢, the
synchronous drive term averages to zero, except for the change
in v induced by the force during a single cycle of slip. This
change from the average v can be estimated by integrating (42)

over the time interval At = Qx/4(v¢-v), with the result

F_ L F
0 X mT°D 1
Av= o [1 ] _Fo] Wyl e

Equating this to (v¢-v), we get the condition for synchron-

ization:

P
"’1""1
o}

F
(v¢—v)2 < T% —% [l - %

[\

] . (49)

o

If we neglect drag, and set Fo = Mg', we have

g'lk
(v¢-v) < [-EF-} ~ 2 mph o (49a)

for typical parameters. Unless this estimate is far from the

mark, it will be necessary to maintain very fine control of

Vg (and hence of the frequency) to avoid going out of synchron-
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ization velocity. 'his appears to be the major problem with

the synchronous drive system.
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Figure 1. Velocity dependence of the magnetic drag in the
hybrid system, compared with air drag. For this plot we have
assumed FD/FLImin = 2ﬂd//§2x = 1/80 and V = V3 ¢? Ah/mod?

= 50 mph, which are appropriate for an aluminum plate of thick-
ness d = 1/4", a 6 foot magnet period Qx’ with the magnets
strong enough to hold the sag of the train AL to 1/4". The air
drag is assumed to rise as v’ and reach 10% of the weight of
the train at 300 mph.
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Figure 2. (a) Configuration of thrust loop conductors for
single-phase synchronous propulsion. (b) Spatial variation
of ﬁz, the average of Bz over width w, in the plane of the
thrust loops due to the train loop currents. Note the rather
square waveform due to the high 3rd harmonic content.

(c) Train magnet current configuration which produces the
field shown in (b).
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Synchronous
772 Drive Loops
Superconducting—{. {{;.......--:
Magnets f/ Nt {
!t .ﬁllffllllq'
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Sheet Track
J ..I

Figure 3. Schematic diagram of a possible train configuration
using the hybrid system for levitation and propulsion. The
conducting sheet track might bhe 1/4" aluminum supported mechan-
ically by a strong non-conducting material such as fibergylass-
epoxy. 'The vertical conductors on either side of it provide
transverse stabilization forces (see text). Possible con-
figurations for the magnets and drive loops are shown in

Figure 2.

-68-



— ¥4 &

-4

—

my

Appendix

Calculation of Ez for a Sz2quence of Rectangular Magnet Loops

We first consider a single rectangular magnet loop
bounded by y = o, w and x = x,, X,, where x, = X, + Zx/2, and
carrying a current I in a counter-clockwise sense. We wish to
compute Ez, where the average is taken between y = o and y = w
along the line specified by x = o and z = h. This is done by

first computing Bz(y')

-}
. I [ (ds x R)+2
B, (y') = § aw, = 1 § = , (A1)
where R = -x & + (y'-y)¢ + h2 is the vector distance from ds to

(o,y',h). Since ds is either along & or ¢, it is convenient

to rearrange the triple product to (2 x d§) g ﬁ, so that only R
Rydx or —Rxdy appears in the numerator. Thus, the contribution
of the loop at x, is

X X,

4 y'dx (y'-w\dx
(B_(y")], = (I/c) [ : + I -
z 1 w240t 24m2y3/2 2 t_y) 24n213/2
; (x%+y' 2+h?) ) [x,*+(y'=y) “+h®]

w

f x,dy T x dy
8 + . (A2)
I A i AL

The integrations are straightforward. After a second inte-

gration over y' to get the average, one finds
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B,), = g5 ——= (h’+wi+x,?)% - (h24x ?)"

T S (h2+w2+x12)% - (h2+x12)!5

(h2+w2+x12)%+xl (h2+x12)!’-xl
+ &n

(h2+w2+x12)]’—xl (h2+x12)]’+x1

2 102 2,k 2 2y X
(h+w +X, ) X, {h +x2 ) +x2

L . » . (A3)
(h2+w2+x22) +x, (h2+x22) =.F

By using this expression, with Xpe1 = X, t zx/z, we
can calculate the contribution to Ez of each loop of the train
magnet system, and sum them to get the total field. Because
of the complexity of (A3), however, it is not convenient to
make extensive calculations of that sort. Rather, we note
that since the total Ez must be periodic with period ﬁx' it
can be described by a Fourier series. Moreover, the symmetry
forbids evein harmonics. Thus, the dominant terms will be the
fundamental and third harmonic terms, which can be characterized
by just two numbers. These may be estimated by fitting the
total ﬁz computed at two polnts in the cycle. For this purpose,
it is particularly efficient to choose the center of the loop
-x, =x, = 2/4 (klxll = n/2), where the fundamental and third

harmonic appear in full amplitude but out of phase, and the
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point where -5x, = x, (k|x | = 7/6) where the third harmonic

adds to the fundamental, which comes in with half amplitude.

Mathematically stated, if we reglect all higher harmonics,

B,(n/2) = B, - B, '
B,(n/6) = B,/2 + B, .
Thus:
B, =% B,(1/2) +B_(n/6) ,
B, =% B,(1/6) - 4B, (n/2) : (a4)

What remains is to calculate Ez(n/G) and Ez(n/Z),
taking account of all the loops, not just the central one
which includes x = 0. Clearly the corrections from the
distant loops are small, and one might hope to approximate
the effect of.each by the field of a dipole p = lex/2c.
Neglecting the small z-displacement h, the contribution of
the n-th loop becomes

t Iwzx/2c

(B,) = 5 . (A5)
R [(x,+x,)/2 + n2 /2]

The ¢ sign alternates along the line of t loops, the n is a

positive or negative integer. For the 7/2 case, (x. + x,)/2

1
= 0, and it is (zx/s) for the m1/6 case. The reliability of

this procedure was tested by computing the exact contribution
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of an adjacent loop for the /2 case, assuming the representative
values w = lx/2 and h = Lx/lz and comparing with the dipole
estimate. The results were 1.04 I/cw and I/cw, respectively,
confirming the satisfactory accuracy of the procedure.

Using (A3) for the central loop, and the dipole approxi-
mation, summed over enough loops for convergence, we compute

that

'Bz (nm/2) 11.6 I/cw ,
(A6)

13.8 I/cw '

ﬁz(n/G)

where we have retained the square loop geometry w = zx/z and
the height h = Ex/12. In both cases, the non-central loops
contribute about 17% of the total. When these results are
inserted in (A5), the results are

B

7 16.9 I/cw

33.8 1 clx ’
(A7)

B,

5.3 I/cw 10.6 I/cﬁ‘,x o

Since the corresponding results from a simple Fourier analysis
of currents running to y = #« are B, = 30 I/cSLx and B, =

10.4 I/c!Lx for the same values of h/ x' but w » =, we may
presume that the finite value of w has little effect on the
validity of the simple Fourier analysis at least so long as

w2 /2.
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MAGNETIC SUSPENSION AND PROPULSION SYSTEMS
FOR HIGH-~SPEED TRANSPORTATION

P. L. Richards
M. Tinkham

Abstract

High speed transportation vehicles (trains) carrying
superconducting magnets can be levitated by repulsion from
diamagnetic currents induced in a conducting track. Various
approximate method: are presented for calculatiny the lift
and drag forces for such magnetic suspensions. Fourier
analysis of periodic train magnet fields is used to analyze
"image force" and "hybrid null flux" systems which involve
homogeneous conducting sheet tracks. A lumped circuit analysis
is used to discuss the "null flux" principle and related
systems with structured tracks. The stability and efficiency
of linear induction and linear synchronous motor propulsion

systems are studied using related methods.
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MAGNETIC SUSPENSION AND PROPULSION SYSTEMS
FOR HIGH-SPEED TRANSPORTATION

P. L. Richards
M. Tinkham

I. INTRODUCTION

Magnetic suspensions are being seriously considered
for high speed ground transportation in several countries.
The failure of adhesive drive systems such as steel wheels on
steel rails at speeds in excess of 300 km/h has forced con-
sideration of nonconventional approaches for both suspension
and drive. Vehicles levitated by magnetic repulsion were
first! considered in 1912 and discussed for transportation
applications in the 1960's.? These are generally not
practical without the large ratio of strength to weight avail-
able from modern magnets. Although repulsive levitation from a
ferromagnetic track may be feasible®'", we confine our attention
to systems in which levitation is oblained from the interaction
of induced currents in a conducting (normal state) track with
the field from superconducting magnets on the train.® The
optimal configuration of train magnets and track is being
vigorously debated at the present time.®-?° 1In order to select
the system for a given application there is need for simple
semi-quantitative calculations which will permit comparison of
the relevant parameters for widely different geometries. In

this paper we discuss various approximate methods for calcu-
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lating the efficiency of magnetic suspensions.

In Section II, we Fourier analyze the periodic magnetic
field and compute the 1ift and drag produced on a line of
electromagnets above and below a flat conducting sheet as
illustrated in Fig. 1. This method of Fourier analysis yields
particularly simple physical formulas relevant to designs in-
volving homogeneous sheet tracks. Detailed results are obtained
for the case of a single line of train magnets above the track
(the image force system). An analysis is then presented of a
(hybrid null flux) system which has train magnets bhoth above
and below a sheet track that is thin compared with the skin
depth. This system combines the homogeneous sheet track with
some features of the "null flux" schemes of Powell and Danby,!2¢13
in that both lift and drag forces become small when the track
is located at the symmetry plane between the magnets. Section
III develops a complementary lumped circuit analysis which is
useful for understanding the null flux track illustrated in
Fig. 2(b) and (c). When the train magnet is located in the
symmetry plane no flux threads the track loop so that lift and
drag forces approach zero. Lift forces increase linearly and
drag forces as the square of the {(small) displacement Ah from
the symmetry plane. The analysis developed in the preceding
sections is used in Section IV to discuss the stability and
efficiency of passive track induction and active track syn-
chronous linear motor drive systems. A portion of this work

has been made available previously.?!
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II. FOURIER ANALYSIS OF MAGNETIC SUSPENSION ABOVE A CONDUCTING
GROUND PLANE

A. Formulation of the Method

In proposed magnetic suspension systems there is
typically a periodic array of "up" and "down" superconducting
magnets along the direction of motion. When the train moves
over a conducting ground plane, the resulting time-varying
fields induce eddy currents which interact with the magnetic
field to produce both a lift and a drag force on the train.

We present here a treatment which takes advantage of the
periodicity of the fields to allow a straightforward solution
of the electromagnetic equations over a wide range of conditions.

The geometry ¢f the problem is sketched in Fig. 1, where
for generality we have included the possibility of magnet
structure both below and above the plane. This will allow us
to model the "hybrid null-flux" as well as the "image force"
schemes. The x-variation will be given by a sum of terms
meikxx, with k= n (2n/% ), where n_ is restricted to the odd
integers if the current distribution is symmetric in x about
the center of a magnet coil and antisymmetric about a point
midway between an up and down coil. Any variation in the y-

direction is taken to have period %, but this variation plays

Yy
a less crucial role because it doesn't cause time-variation
with a train velocity along x.

Since displacement current effects may he safely

neglected, the magnetic field B satisfies Laplace's equation
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V2B = 0 in the non-conducting regions I, II, 1V, and V of
Fig. 1. Given a periodic variation in the xy plane as
el(kxx+kYy), this equation then requires real exponential

variation with z, namely,

‘ﬁ = eikz ei (kxx+kyy)' (1)

where k? = kx2 + kyz. Only exponential solutions which decay

as z + + » are physically allowed in regions I and V. In regions
II and IV, both exponential solutions are required to satisfy
boundary conditions at the surfaces of the ground plane, but

the inward decaying exponentials will dominate the solution.

The coefficients of these terms are uniquely determined by the
corresponding Fourier components of the current distributions

in the magnet planes.

Because the higher Fourier components (nx = 3,5:44)
decay more rapidly, we shall henceforth confine our treatment
to the case of a single dominant Fourier component with
| 217/2x with the understanding that it may be necessary to
superpose results for two or more values of kx to get a quanti-
tative treatment in some cases. The relative size of the first
Fourier component is illustrated in Fig. 3. The field vari-
ation in the y-direction only contributes to the exponential
attenuation by making k > kx without any qualitative changes in
the results. We give no further attention to it here except to
retain the notation k in the exponential factors as a reminder.

The field in the metal satisfies the differential
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equation V2B = 2iB/82 where § is the familiar skin depth defined

by
2 2

2 C — C
0fl= 2T0Ww Zﬁaixv * (2)

Since the magnet period is much greater than the skin depth,
allowing neglect of k? compared to 1/52?, the solutions are well

approximated by the form

g o ei(l+i)2/6 eikxx , (3)

in the metal.

The most general solution can be built up from these
parts with coefficients selected to satisfy the boundary con-
ditions. Although such a solution is rather straightforward,
it leads to complicated results needing numerical evaluation,
with consequent loss of simplicity and insight. We sidestep
this frontal attack. 1Instead, we first deduce convenient
general expressions for lift and drag forces; then we treat the
two limits in which simple solutions in closed form can be
obtained, namely, the limits in which the thickness d of the
ground plane is either much less than or much greater than the
skin depth 6. Finally, we propose a way to piece these two
solutions together to yield simple expressions which should
also be reasonable approximations even in the cross-over region,
where d = 6. These results are used to explore the image force
suspension which has a line of train magnets over a homogeneous

conducting sheet track. They arc then extended Lo treat a
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novel form of the null-flux suspension with train magnets both
above and below the sheet track.

B. General Expressions for Lift and Drag Forces

The Lorentz force per unit area is (l/c) /[(J x B)dz,
where the integration is over the thickness of the metal sheet.
The forces on the magnet structure are equal and opposite.
Using the Maxwell equations, simple expressions for the lift
and drag forces may be deduced from this formula.

The lift per unit area on the magnets is simply the
difference in the magnetic pressures due to the rms fields ﬁu
and EQ at the upper and lower surfaces of the sheet:

|82 - |B,|?
FL = . 8n : ' (4)

Taking advantage of the fact that By ¥~ 0 in cur one-dimensional

geometry and that either Bz is small (» kdex<<Bx) or else

B,z © By, o+ this can be written to good approximation as
- %
2 m 2
P o= IBux| 'Ble = Re Bx ABx (5)
L 8n g !

where Bx = (Bux + Bzx)/z and ABx S (Bux - Bzx) = 4n}y/c, the

net sheet current density in the metal,

The magnitude of the drag force per unit area FD can
be inferred by equating the power dissipation in the plate
o=t 7|F|? dz to Fyve In the strictly one-dimensional case,

the current flows only along ¢, and it is given by Jy = cEy

= o(v/c)Bz by Faraday's law of induction. 1In that case
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Fp = E¥ /|8, |z, (6)

Now, if the width w of the sheet is finite, the requirement
of closed current loops (div J = 0) introduces terms in Jx’
and Jz’. which are, respectively, corrections of order
(t,/2w)? and the smaller of (d/w)? of (6/w)?. The first
correction is of order unity, but a similar correction appears
in the 1lift calculation, so it essontially cancels in the
lift/drag ratio. The Jz' correction s gencrally negligible.
Thus, we should get quite reliable results, especially for the
litt/drag ratio, by using our one-dimensional approximations (5)
and (6), even in realistic finite-width geometries. Accordingly,
we shall use the one-dimensional approximations in the following
without further discussion.

To use tlhese formulas, we must relate the fields in the
sheet to the magnet source strengths. The fields in the space
between the sheet and the magnets are of the form B = B+ekz

+ n e ke, For such fields,

i _kz , 1d
2B, e”" = LB ¥ 1 By = B.'iB, , (7)
since curl B = 0. Thus, the boundary conditions at the upper
and lower surfaces can be expressed in terms of parameters bu 2
’
whicl depend on both the strengths of the fields in the planes
of the magnets Bou,n and the exponential attenuation over the

distances hu ¢ 8eparating the magnets from the surfaces:
’
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=khy
bu ZBoue = Bux + i Buy ’

(8)

e-khg

b = B -iB®

= 28, Lx

L Lz °

The rms source strengths B  are given directly in terms of the
Fourier coefficients of the she2t current densities as

2
B = (2/7?/czx) J

X ,
=-ikx
ou, % 9yu'2(x)e dx , (9)

o
where the somewhat curious coefficient takes account of the
presence of both eiikx components and of the conversion to rms
values from the dc value ?y(x). As an example, a close spaced
series of 3 ft. square loops carrying persistent currents of
300,000 A would give Bo = 6,000 G.

C. Thick Ground Plane or High-Velocity Limit

As our first application of the general method, we treat
the case of a single set of magnets moving over a ground plane
at sufficient speed that §, the skin depth, is much less than d,
the thickness of the sheet. In this case, b, = 0, and we work
only with the boundary condition at the upper surfaces; moreover,
since the field in the sheet must decay downward, it must have

the form § = §ue(l+i)z/6eikx.

Using div B = 0, iB, = k8B, /(1+i).
Thus, the boundary condition (8) yields B, = bu[1+k6/(l+i)]".
To f£ind the 1ift force, we simply insert this in (5), with the

result

FL - m ’ (10)
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where

b ? B2 e 2khy
F_ = i_gl_ = (11)
© m 2m

is the limiting value of FL when v + w 50 that k& - 0. 1In
obtaining (10), we have dropped all terms of order (k8)? and
higher. To get a more accurate result, one must include the
lelz term and also note that d?B/dz? = (V3-32/39x2)B = (2i/62
+k?)B, so that a k-dependence enters the skin depth. wWhen
this is carried through consistently, one finds that the first
corrections to (10) are actually of order k35?, so (10) should
be quite a useful approximation.

Now let us calculate the drag force using Eq. (6). It
is

0

Fy = (ov/c?)|B_ |2 j e?(1ti)z/dg, _ (ové/2c?)|B_ |2 . (12)

- U0

Using our relation between Buz and Bux' this becomes
= 2y = =
Fp kélBuxl /81 = ké F, =F,_ VTS (13)

These results for the 1jift and drag forces are plotted vs
velocity in Fig. 4. The velocity scale is normalized in terms
of a characteristic velocity v, = cz/Zxc at which k¢ = 1,

(For the typical design parameters listed in Table I,

vV, * % km/h.) Thus, the approximation ké < 1 ig only valid
for v/v, 2 1, but in practical situations this is always

satisfied.
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Note the particularly important result that the normal-
ized drag (or inverse of the lift/drag ratio) has the simple

form
Fo/F, = k& = 216/8 = c/(zxcv)5 i (14)

Physically speaking, this is the small ratio imposed by the

skin effect on the fields Bz and Bx' with which Jy interacts

to give the two forces. Using numerical values from Table I,
FD/FL = 1/30 for aluminum when v = 500 km/h. Even with the less
favorable speed of 100 km/h, FD/FL = 1/13, which is still
workable and comparable to the wind resistance at higher speeds.
At these two speeds, § = 1 cm and 2.3 cm, respectively, so that
the results should apply quite well for the case of a 2.5 cm
aluminum ground plane.

D. Thin Ground Plane or Low Velocity Limit

We now consider the other simple limit, d << §, which
always holds at sufficiently low velocities, and which is quite
adequate at all speeds of interest for aluminum of d < 0.6 cm.
First we treat the single-sided case, in which bz = 0., For
this case, it is a satisfactory approximation to replace the
actual sheet by one of infinitesimal thickness but the same
finite conductance per square od as the actual sheet. The

boundary values on the upper and lower surfaces are then

related by Buz = Blz = Bz and
T (Byy = Byy) = §, = 94, = cd(v/c)B (15)
4n ux 4x y Y z °
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